3.573 \(\int \frac {\sqrt {a+b x^n+c x^{2 n}}}{x^2} \, dx\)

Optimal. Leaf size=149 \[ -\frac {\sqrt {a+b x^n+c x^{2 n}} F_1\left (-\frac {1}{n};-\frac {1}{2},-\frac {1}{2};-\frac {1-n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{x \sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1}} \]

[Out]

-AppellF1(-1/n,-1/2,-1/2,(-1+n)/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))*(a+b*x^n+c*
x^(2*n))^(1/2)/x/(1+2*c*x^n/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1+2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1385, 510} \[ -\frac {\sqrt {a+b x^n+c x^{2 n}} F_1\left (-\frac {1}{n};-\frac {1}{2},-\frac {1}{2};-\frac {1-n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{x \sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^n + c*x^(2*n)]/x^2,x]

[Out]

-((Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[-n^(-1), -1/2, -1/2, -((1 - n)/n), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]),
 (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(x*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + S
qrt[b^2 - 4*a*c])]))

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
 b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x^n+c x^{2 n}}}{x^2} \, dx &=\frac {\sqrt {a+b x^n+c x^{2 n}} \int \frac {\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}{x^2} \, dx}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ &=-\frac {\sqrt {a+b x^n+c x^{2 n}} F_1\left (-\frac {1}{n};-\frac {1}{2},-\frac {1}{2};-\frac {1-n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{x \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.64, size = 365, normalized size = 2.45 \[ \frac {b n x^n \sqrt {\frac {-\sqrt {b^2-4 a c}+b+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^n}{\sqrt {b^2-4 a c}+b}} F_1\left (\frac {n-1}{n};\frac {1}{2},\frac {1}{2};2-\frac {1}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{\sqrt {b^2-4 a c}-b}\right )-2 a (n-1) n \sqrt {\frac {-\sqrt {b^2-4 a c}+b+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^n}{\sqrt {b^2-4 a c}+b}} F_1\left (-\frac {1}{n};\frac {1}{2},\frac {1}{2};\frac {n-1}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{\sqrt {b^2-4 a c}-b}\right )+2 (n-1) \left (a+x^n \left (b+c x^n\right )\right )}{2 (n-1)^2 x \sqrt {a+x^n \left (b+c x^n\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*x^n + c*x^(2*n)]/x^2,x]

[Out]

(2*(-1 + n)*(a + x^n*(b + c*x^n)) - 2*a*(-1 + n)*n*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*
c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[-n^(-1), 1/2, 1/2, (-1 + n)/n, (
-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + b*n*x^n*Sqrt[(b - Sqrt[b^2 - 4*a*c] +
 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[(-
1 + n)/n, 1/2, 1/2, 2 - n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])])/(2*(-
1 + n)^2*x*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c x^{2 \, n} + b x^{n} + a}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)/x^2, x)

________________________________________________________________________________________

maple [F]  time = 0.07, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b \,x^{n}+c \,x^{2 n}+a}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^n+c*x^(2*n)+a)^(1/2)/x^2,x)

[Out]

int((b*x^n+c*x^(2*n)+a)^(1/2)/x^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c x^{2 \, n} + b x^{n} + a}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+b\,x^n+c\,x^{2\,n}}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^n + c*x^(2*n))^(1/2)/x^2,x)

[Out]

int((a + b*x^n + c*x^(2*n))^(1/2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a + b x^{n} + c x^{2 n}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x**n+c*x**(2*n))**(1/2)/x**2,x)

[Out]

Integral(sqrt(a + b*x**n + c*x**(2*n))/x**2, x)

________________________________________________________________________________________